A Co-Culture System with an Organotypic Lung Slice and an Immortal Alveolar Macrophage Cell Line to Quantify Silica-Induced Inflammation
نویسندگان
چکیده
There is growing evidence that amorphous silica nanoparticles cause toxic effects on lung cells in vivo as well as in vitro and induce inflammatory processes. The phagocytosis of silica by alveolar macrophages potentiates these effects. To understand the underlying molecular mechanisms of silica toxicity, we applied a co-culture system including the immortal alveolar epithelial mouse cell line E10 and the macrophage cell line AMJ2-C11. In parallel we exposed precision-cut lung slices (lacking any blood cells as well as residual alveolar macrophages) of wild type and P2rx7-/- mice with or without AMJ2-C11 cells to silica nanoparticles. Exposure of E10 cells as well as slices of wild type mice resulted in an increase of typical alveolar epithelial type 1 cell proteins like T1α, caveolin-1 and -2 and PKC-β1, whereas the co-culture with AMJ2-C11 showed mostly a slightly lesser increase of these proteins. In P2rx7-/- mice most of these proteins were slightly decreased. ELISA analysis of the supernatant of wild type and P2rx7-/- mice precision-cut lung slices showed decreased amounts of IL-6 and TNF-α when incubated with nano-silica. Our findings indicate that alveolar macrophages influence the early inflammation of the lung and also that cell damaging reagents e.g. silica have a smaller impact on P2rx7-/- mice than on wild type mice. The co-culture system with an organotypic lung slice is a useful tool to study the role of alveolar macrophages during lung injury at the organoid level.
منابع مشابه
Effect of exposure to silica on human alveolar macrophages in supporting growth activity in type II epithelial cells.
BACKGROUND The proliferative response of type II cells is an important event following silica-induced lung injury. Alveolar macrophages, when activated by fibrogenic agents, secrete various biological mediators which affect cell growth. METHODS Human alveolar macrophages from normal volunteers were incubated in serum-free medium or in the presence of increasing concentrations of silica. Alveo...
متن کاملSelectively Decreased Expression of Peroxiredoxins Induced by Silica in Pulmonary Epithelial Cells
BACKGROUND/AIMS Peroxiredoxin (Prx) belongs to a ubiquitous family of antioxidant enzymes that regulates many cellular processes through intracellular oxidative signal transduction pathways. Silica-induced lung damage involves reactive oxygen species (ROS) that trigger subsequent toxic effects and inflammatory responses in alveolar epithelial cells resulting in fibrosis. Therefore, we investiga...
متن کاملProtective effect of IL-6 on alveolar epithelial cell death induced by hydrogen peroxide.
The goal of this study was to examine whether IL-6 could directly protect lung resident cells, especially alveolar epithelial cells, from reactive oxygen species (ROS)-induced cell death. ROS induced IL-6 gene expression in organotypic lung slices of wild-type (WT) mice. ROS also induced IL-6 gene expression in mouse primary lung fibroblasts, dose dependently. The organotypic lung slices of WT ...
متن کاملModulation of eicosanoid production by human alveolar macrophages exposed to silica in vitro.
Repeated inhalation of silica dust can lead to inflammation and fibrosis in human lung and in experimental animal models. The alveolar macrophage is believed to play a pivotal role in this process. Numerous macrophage-derived growth factors, cytokines, and arachidonic acid metabolites have been shown to contribute to inflammation and fibrosis. The objective of this study was to determine the ei...
متن کاملcircRNA Mediates Silica-Induced Macrophage Activation Via HECTD1/ZC3H12A-Dependent Ubiquitination
Rationale: Phagocytosis of silicon dioxide (SiO2) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of non-coding RNAs detected within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiological process of silicosis. The upstrea...
متن کامل